Atorvastatin Attenuates Metabolic Remodeling in Ischemic Myocardium through the Downregulation of UCP2 Expression
نویسندگان
چکیده
Uncoupling protein 2 (UCP2) is primarily expressed in the myocardium and is closely related to myocardial ischemia/reperfusion injury and myocardial metabolism. To explore the effects and the mechanisms of UCP2 on atorvastatin-mediated myocardium protection, the rat model of myocardial ischemia was established by ligation of the left anterior descending coronary arteries (LADs). The rats were divided into the sham operation (SO) group, myocardial infarction (MI) group and MI-atorvastatin group. The study that atorvastatin reduced myocardial remodeling and improved the disturbed myocardial energy metabolism after MI. Furthermore, the mechanisms of myocardial metabolic remodeling affected by atorvastatin were explored. The atorvastatin group showed a significantly decreased expression of UCP2 mRNA and protein. Furthermore, the primary rat cardiomyocytes were cultured and treated with angiotensin II (Ang II) to induce cardiomyocyte hypertrophy. The results showed that in the atorvastatin group, the surface area of the cardiomyocytes, the total protein content per unit of cells, and the expression of the UCP2 protein were significantly decreased. These data suggested that atorvastatin significantly attenuated the myocardial remodeling by downregulating the expression of UCP2 that was found to improve the myocardial energy metabolism, inhibit myocardial hypertrophy, and eventually reduce myocardial remodeling.
منابع مشابه
TRPV1 Activation Attenuates High-Salt Diet-Induced Cardiac Hypertrophy and Fibrosis through PPAR-δ Upregulation
High-salt diet-induced cardiac hypertrophy and fibrosis are associated with increased reactive oxygen species production. Transient receptor potential vanilloid type 1 (TRPV1), a specific receptor for capsaicin, exerts a protective role in cardiac remodeling that resulted from myocardial infarction, and peroxisome proliferation-activated receptors δ (PPAR-δ) play an important role in metabolic ...
متن کاملIncrease of uncoupling protein-2 expression in the ischemic rat heart
Introduction: Reactive oxygen species (ROS) have been suggested to play an important role in the myocardial damage induced by ischemia – reperfusion. One element believed to be activated by ROS and to contribute to the reduction of ROS production, is the uncoupling protein-2 (UCP2). The objective of this investigation was to explore the effect of myocardial ischemia reperfusion on cardiac UC...
متن کاملEvaluation of UCP2 expression in the phenomenon of ischemic resistance induced by alternating normobaric hyperoxia in a rat model of stroke
Introduction: ischemic preconditioning is one of the most important mechanisms, responsible for the increased brain resistance after stroke. One of the most important candidates to ischemia preconditioning is intermittent normobaric hyperoxia. In this study, the effect of intermittent normobaric hyperoxia on the expression of UCP2 was investigated in a stroke model. Methods: Rats were divid...
متن کاملAtorvastatin Protects Myocardium Against Ischemia-Reperfusion Injury Through Inhibiting miR-199a-5p.
OBJECTIVE This study aimed to evaluate the protective effects of atorvastatin against myocardial ischemia/reperfusion (I/R) injury in cardiomyocytes and its possible underlying mechanism. METHOD Direct cytotoxic effect of OGD/R on cardiomyocytes with and without atorvastatin pretreatment was evaluated. Effects of atorvastatin on expression of GSK-3β and miR-199a-5p were determined using RT-PC...
متن کاملInhibition of Uncoupling Protein 2 Attenuates Cardiac Hypertrophy Induced by Transverse Aortic Constriction in Mice.
BACKGROUND Uncoupling protein 2 (UCP2) is critical in regulating energy metabolism. Due to the significant change in energy metabolism of myocardium upon pressure overload, we hypothesize that UCP2 could contribute to the etiology of cardiac hypertrophy. METHODS Adult male C57BL/6J mice were subjected to pressure overload by using transverse aortic constriction (TAC), and then received genipi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 15 شماره
صفحات -
تاریخ انتشار 2018